Volume 13, Issue 2A and 2B, 2025
Health Analysis Using Ecological Niche and Agent-Based Models in Predicting Malaria Prevalence Among Pregnant Women in Lagos State
Molayoto Jocelyn Abiola, Ayoola Olamilekan Abiola &Sylvester Emeka Obu
Abstract
Health Analysis Using Ecological Niche
and Agent-Based Models in Predicting
Malaria Prevalence Among Pregnant
Women in Lagos State
Keywords
Malaria Temperature, Prevalence, Rainfall, Migration, Land use
Full Text
Download
References
Arisco, N. J. (2023). The Role of Human Mobility,
Deforestation, and Extreme Weather
Events on Malaria in Brazil. Harvard
University,
Arisco, N. J., Peterka, C., & Castro, M. C. (2022).
Imported malaria definition and minimum
data for surveillance. Scientific Reports,
12(1), 17982.
Lagos State Ministry of Health (2022). 2021
Annual operational plan for malaria
elimination. Lagos State Ministry of Health
publication.
Filho, W., May, J., May, M., & Nagy, G. J. (2023).
Climate change and malaria: some recent
trends of malaria incidence rates and
average annual temperature in selected sub
Saharan African countries from 2000 to
2018. Malaria journal, 22(1), 248.
Li, Y., Stewart, K., Han, K. T., Han, Z. Y., Aung,
P. P., Thein, Z. W., . . . Plowe, C. V. (2023).
Understanding
spatiotemporal
human
mobility patterns for malaria control using
a multiagent mobility simulation model.
Clinical Infectious Diseases, 76(3), e867
e874.
Li, Y., Stewart, K., Han, K. T., Han, Z. Y., Aung,
P. P., Thein, Z. W., . . . Plowe, C. V. (2023).
Understanding
spatiotemporal
human
mobility patterns for malaria control using
a multiagent mobility simulation model.
Clinical Infectious Diseases, 76(3), e867
e874.
Loiseau, C., & Sehgal, R. N. (2022). Consequences
of deforestation and habitat degradation on
wildlife mosquito-borne diseases. In
Ecology and Control of Vector-borne
Diseases (pp. 450-460): Wageningen
Academic Publishers.
Memarsadeghi, N., Stewart, K., Li, Y., Sornsakrin,
S., Uthaimongkol, N., Kuntawunginn, W., .
.
.
Jongsakul, K. (2023). Understanding
work-related travel and its relation to
malaria occurrence in Thailand using
geospatial maximum entropy modelling.
Malaria journal, 22(1), 1-11.
Modu, B., Polovina, N., & Konur, S. (2023).
Agent-Based
Modeling
of
Malaria
Transmission. IEEE Access, 11, 19794
19808.
Olasunkanmi, O. (2021). Press statement to
commemorate 2021 world malaria day in
Lagos State. Lagos State Ministry of Health
publication.
Ozodiegwu, I. D., Ambrose, M., Galatas, B.,
Runge, M., Nandi, A., Okuneye, K., . . .
Bever,
C.
(2023).
Application
of
mathematical modelling to inform national
malaria intervention planning in Nigeria.
Malaria journal, 22(1), 1-19.
Phang, W. K., Hamid, M. H. b. A., Jelip, J.,
Chuang, T.-W., Lau, Y. L., & Fong, M. Y.
(2023). Predicting Plasmodium knowlesi
transmission
risk
across
Peninsular
Malaysia using machine learning-based
ecological niche modelling approaches.
Frontiers in Microbiology, 14, 1126418.
Adeogun, A., Babalola, A. S., Okoko, O.
O., Oyeniyi, T., Omotayo, A., Izekor, R. T.,
. . . Adeleke, M. (2023). Spatial distribution
and
ecological
niche modelling of
geographical spread of Anopheles gambiae
complex in Nigeria using real time data.
Scientific Reports, 13(1), 13679.
Regos, A., Gonçalves, J., Arenas?Castro, S.,
Alcaraz?Segura, D., Guisan, A., &
Honrado, J. P. (2022). Mainstreaming
remotely sensed ecosystems functioning in
ecological niche models. Remote Sensing in
Ecology and Conservation, 8(4), 431-447.
Saberi, N., Raeisi, A., Gorouhi, M. A., Vatandoost
, H., Omid, F. B., & Hanafi
Bojd, A. A. (2023). Modeling the effect of
climate change on the distribution of main
malaria vectors in an endemic area, Southe
astern Iran. Iranian Journal of Public Heal
th, 52(5), 1061
1070. https://doi.org/10.18502/ijph.v52i5.
26639
White, N. J. (2022). Severe malaria. Malaria
journal, 21(1), 284.
World Health Organisation (2022). Report on
malaria in Nigeria 2022. Retrieved from
https://www.afro.who.int/sites/default/files
/2023-08/WEB_7784%20WMR%20
%20Nigeria%202022_2408.pdf
on
05/05/2023.
World Health Organization. (2023). World malaria
report 2023. World Health Organization.
https://www.who.int/teams/global
malaria-programme/reports/world
malaria-report